Example: Another DC
Analysis of a BJT Circuit

Find the collector voltages of the two BJTs in the circuit below.

ASSUME both BJTs are in active mode, therefore ENFORCE

$$
V_{E B}^{1}=V_{E B}^{1}=0.7 \mathrm{~V}, i_{C 1}=100 i_{B 1} \text {, and } i_{C 2}=100 i_{B 2}
$$

Q: Now, how do we ANALYZE the circuit ??
A: This seems to be a problem! We cannot easily solve the emitter base KVL, as i_{1} is NOT EQUAL to $i_{E 1}$ (make sure you understand this !). Instead, we find:

$$
i_{E 1}=i_{1}+i_{B 2}
$$

So, what do we do ?
First, ask the question: What do we know ??
Look closely at the circuit, it is apparent that $V_{B 1}=5.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{E} 2}=7.7 \mathrm{~V}$.

Hey! We therefore also know $V_{E 1}$ and $V_{B 2}$:

$$
\begin{aligned}
& V_{E 1}=V_{B 1}+V_{E B}^{1}=5.3+0.7=6.0 \mathrm{~V} \\
& V_{B 2}=V_{E 2}-V_{E B}^{2}=7.7-0.7=7.0 \mathrm{~V}
\end{aligned}
$$

Wow ! From these values we get:

$$
i_{1}=\frac{10-V_{E 1}}{1}=\frac{10-6}{1}=4 \mathrm{~mA}
$$

and

$$
i_{B 2}=\frac{V_{\mathrm{B}}-V_{E 1}}{50}=\frac{7-6}{50}=0.02 \mathrm{~mA}
$$

This is easy! Since we know i_{1} and $i_{B 2}$, we can find $i_{E 1}$:

$$
i_{E 1}=i_{1}+i_{B 2}=4.0+0.02=4.02 \mathrm{~mA}
$$

Since we know one current for each BJT, we know all currents for each BJT:

$$
\begin{gathered}
\mathrm{i}_{C 1}=\alpha \mathrm{i}_{\mathrm{E} 1}=\frac{\beta}{\beta+1} \mathrm{i}_{\mathrm{E} 1}=\frac{100}{101} 4.02=3.98 \mathrm{~mA} \\
\mathrm{i}_{C 2}=\beta \mathrm{i}_{\mathrm{B} 2}=100(0.02)=2 \mathrm{~mA}
\end{gathered}
$$

Finally, we can determine the voltages $V_{c 1}$ and $V_{c 2}$.

$$
\begin{aligned}
& V_{C 1}=0.0+1 i_{c 1}=0.0+1(3.98)=\underline{3.98 \mathrm{~V}} \\
& V_{C 2}=0.0+1 i_{c 2}=0.0+1(2.0)=\underline{2.0 \mathrm{~V}}
\end{aligned}
$$

Now, let's CHECK to see if our assumptions were correct:

$$
\begin{gathered}
i_{C 2}=2 \mathrm{~mA}>0 \quad i_{C 1}=3.98 \mathrm{~mA}>0 \\
V_{E C}^{1}=V_{E 1}-V_{C 1}=6.0-3.98=2.02 \mathrm{~V}>0.7 \mathrm{~V} \\
V_{B C}^{2}=V_{B 1}-V_{C 1}=7.0-2.0=5.0 \mathrm{~V}>0
\end{gathered}
$$

Assumptions are correct!

